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1 Introduction

This document presents and discusses the data that should be collected during DNS simulations

and was prepared for use in the EU project HiFi Turb. The document is split up in a main

section and appendices. The main body details the mandatory and hence minimum data to be

acquired and entered into the KB Wiki, and consists of

• Section 2 briefly introduces the notations which will be used;

• Section 3 details the mandatory data sets consisting of mean-flow quantities and single-

point correlations in the volume appearing in the averaged Navier-Stokes equations and the

Reynolds stress equations, as well as some additional quantities of interest to practitioners.

• Section 4 gives a list of mandatory statistical data to be computed on solid surfaces;

• Section 5 discusses the computation of the turbulent integral time scales.

• Section 6 provides guidelines for the acquisition of time series of instantaneous data in the

boundary-layer region of the flow;

The appendices provide supplementary information including guidelines for acquiring the

statistical data, baseline datasets to be stored at checkpoints for reconstructing the former, and

further background information on the Reynolds stress equations with additional variants and

optional terms appearing in these.

• Appendix A derives and discusses the variants of the Reynolds-stress equations found in

the literature, highlighting the differences.

– Appendix A.1 details the Reynolds averaged Navier-Stokes equations;

– Appendix A.2 derives and presents the different variants of the compressible Reynolds-

stress equations;

– Appendix A.3 presents the incompressible Reynolds stress equations and introduces

the correction terms needed if these equations are computed using a compressible

solver.

– Appendix A.4 discusses the non-equivalence of certain terms in the chosen compress-

ible and incompressible forms of the Reynolds stress equations for constant-density

flows.

• Appendix B provides the guidelines for the acquisition of statistical data;

– Appendix B.1 discusses the computation of single-point correlations;

– Appendix B.2 provides minimal data sets that should be stored in the computation

checkpoints to support the adequate computation of the terms listed in section 3;
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– Appendix B.3 discusses the computation of the integral time scales.

• Appendix C lists a small number of additional quantities for optional storage which com-

plete the variants of the Reynolds stress equations detailed in Appendices A.2 and A.3,

but were not covered in the main document.
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2 Conventions

2.1 Notation

• vectors u and tensors τ are indicated in boldface, whereas scalars as well as vectors and

tensor components are noted in regular face.

• Cartesian components are indicated with indices i, j or k; e.g. the velocity components are

denoted as ui;

• near walls, n indicates the wall normal component, whereas s, t indicate wall tangential

components in the streamwise and transversal direction. For instance, the streamwise and

transverse components of the wall shear stress are denoted τns and τnt;

• the derivatives of first and second order are respectively noted as

a,i=̂
∂a

∂xi
a,ij=̂

∂2a

∂xi∂xj

• Einstein notation is used throughout the text, entailing summation on repeated indices

aibi=̂

3∑
i=1

aibi = a · b ai,i=̂

3∑
i=1

ai,i = ∇ · a

2.2 Governing equations

We use the following conventions for the flow variables

• density ρ, pressure p, velocity u and temperature T which

– satisfy the ideal gas relation p = ρRT for compressible flow computations;

– feature a strictly constant density ρ for incompressible flow computations.

• kinetic energy K = 1
2uiui

• internal energy e = CvT and enthalpy h = e + p/ρ. For a compressible flow computation

h = (Cv +R)T = CpT .

• stagnation internal energy E = e+K and enthalpy H = h+K

• strain rate Sij and rotation tensor Ωij

Sij =
1

2

(
uj ,i + ui,j

)
Ωij =

1

2

(
uj ,i − ui,j

)
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• viscous stress tensor τ and heat flux q

τij = 2µ

(
Sij −

1

3
uk,kδij

)
qi = −κ T,i

We impose that constant values are taken for gas constant R, heat capacities Cv, Cp = Cv +R,

dynamic viscosity µ, and conductivity κ since otherwise the averaged equations become even

more involved.

With these conventions, the Navier-Stokes equations are

ρ,t + (ρui),i = 0

(ρui),t + (ρuiuj),j + p,i = τij,j

(ρE),t + (ρHui),i = (uiτij),j + qi,i

(1)

For incompressible constant density flows we have

ui,i = 0

ρui,t + ρ(uiuj),j + p,i = τij,j

ρE,t + ρ(Hui),i = (uiτij),j + qi,i

(2)

Note that the density is still present for dimensional coherence.

Multiplying the momentum equation with velocity, we obtain the Bernoulli equation:

(ρK),t + (ρKui),i + (pui),i − pui,i = (uiτij),j − τijSij (3)

Combining this equation with the energy equation, and using the symmetry of the shear stress

tensor τ , we obtain an equation for internal energy e

(ρe),t + (ρeui),i + pui,i = τijSij + qi,i (4)

For incompressible flows, this form of the energy equation is often used as an alternative to the

total energy equation in the general Navier-Stokes equations. As temperature has no impact on

the momentum equations, this equation may even not be solved.

2.3 Averages and fluctuations

The Reynolds average and its associated fluctuation result from the ensemble average

q(x, y, z, t) =
1

N

N∑
l=1

ql(x, y, z, t) (5)

q′(x, y, z, t) = q(x, y, z, t)− q(x, y, z, t) (6)
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with the index l running on the N realizations of the flow field. For statistically stationary flows,

l will correspond to a snapshot in a time series. The Favre average is based upon the density

weighted ensemble average and the associated fluctuations

q̃ =
ρq

ρ
(7)

q′′(x, y, z, t) = q(x, y, z, t)− q̃(x, y, z, t) (8)

Obviously the corresponding averages for both types of fluctuations are zero:

a′ = 0 ã′′ = ρa′′ = 0 a′′ 6= 0 ã′ = ρa′ 6= 0

Any average can be taken out of the average of a product:

a b = a b ã b = ã b ã b = a b̃ ˜̃a b = ã b̃

Averages and derivatives commute

∂a

∂t
=
∂a

∂t

∂̃a

∂t
=
∂ã

∂t
. . .

3 Required statistical data in the volume

The data are organized in 2 levels essentially following the level of closure in turbulence mod-

elling. Typically, as the level increases, the order of correlations increases as well as the impor-

tance of fine scales. This means the statistical convergence as well as the required resolutions

are more difficult to achieve.

The two levels are

1. level 1 corresponds to the quantities appearing in the averaged Navier-Stokes equations,

discussed in appendix A.1;

2. level 2 corresponds to the quantities appearing in the transport equations for the turbu-

lent fluxes. More specifically only the Reynolds stress equation, discussed in appendix A.2

is retained, while at this stage the turbulent heat flux equation is not. Different formu-

lations are available in literature for compressible flows, which are discussed appendices

A.2 and A.3. For compressible flow solvers, the formulation of Gerolymos and Vallet [3],

described in A.2.3.1, is chosen as mandatory. For incompressible flow solvers the standard

incompressible variant described in A.3.2 will be used;

3. originally a third level was planned based on the transport equation for the rate of dissi-

pation ε of the turbulent kinetic energy. The terms in this equation are attainable only
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by DNS at extremely high resolution, and for compressible flows there are still uncertain-

ties about which formulation to choose. Further, in the turbulence modelling community

there are doubts about the usefulness of the exact epsilon equation for modelling purposes.

Hence level 3 was not pursued.

3.1 Exact averaged equations

The equations, and later in section 3.3 the data to be stored, are given separately for the use of

compressible and incompressible codes.

3.1.1 Compressible codes

The compressible codes need to be able to provide all terms appearing in the exact averaged

equations:

• Level 1: the Favre averaged Navier-Stokes equations following Knight [7]:

ρ,t + (ρũk),k = 0

(ρũi),t + (ρũiũj),j + p,i = (τij −Rij),j

(ρẼ),t + (ρH̃ũj),j = ũi (τij −Rij),j + (qj −Qj),j +

(
u′′i τij −

1

2
ρ
(
u′′ku

′′
k

)
u′′j

)
,j

(9)

with the turbulent fluxes, namely the Reynolds stress and the turbulent heat flux

Rij = ρu′′i u
′′
j = ρ ũ′′i u

′′
j (10)

Qi = ρu′′i h
′′ = ρ ũ′′i h

′′ (11)

and modified constitutive relations

p = ρRT̃ ẽ = CvT̃ ρh̃ = ρẽ+ p = ρCpT̃

ρẼ = ρẽ+ ρK̃ + ρKt ρH̃ = ρh̃+ ρK̃ + ρKt

ρKt =
1

2
ρu′′ku

′′
k =

1

2
ρũ′′ku

′′
k ρK̃ =

1

2
ρũkũk

• the Reynolds stress equation following Gerolymos and Vallet [3]:

Rij,t + (Rij ũk),k = Pij +Dij + Φij + Φ′ij − εij +Kij (12)

with
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– the production term

Pij = −Rikũj,k −Rjkũi,k (13)

– the turbulent diffusion

D1
ij = −

(
ρu′′i u

′′
ju
′′
k

)
,k

(14)

– the pressure diffusion

D2
ij = −

(
p′(u′′i δjk + u′′j δik)

)
,k

(15)

– the viscous diffusion

D3
ij =

(
u′′i τ

′
jk + u′′j τ

′
ik

)
,k

(16)

– the pressure strain term

Φij = p′(u′′i,j + u′′j,i −
2

3
u′′k,kδij) (17)

– the pressure-dilatation term

Φ′ij =
2

3
p′u′′k,kδij (18)

– the viscous dissipation

εij = τ ′jku
′′
i,k + τ ′iku

′′
j,k (19)

– the density fluctuation effects

Kij = −u′′i (p,j − τjk,k)− u′′j (p,i − τik,k) (20)

Note that Kij is usually neglected in the modeled Rij equations, but should be retained

in order to obtain a zero residual.

• the equation for the turbulent kinetic energy is found by computing the trace of all the

terms in the Reynolds stress equations and are therefore not stored separately. For in-

stance, the kinetic energy dissipation is found from the correlation between stress and

velocity gradient

ε = 2τ ′iju
′′
i,j

We should remark that although the formulation of Gerolymos and Vallet is very similar to

the incompressible formulation discussed in the next section, the equations do not correspond

on a term by term basis as u′′i → u′i. More specifically the viscous diffusion term D3
ij and the

dissipation term εij are not exactly the same as the incompressible counterparts as discussed in

section 3.1.2 and more in detail in appendix A.4.
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3.1.2 Incompressible codes

For incompressible codes, the stored data should contain all terms in

• Level 1: the Reynolds averaged Navier-Stokes equations

uk,k = 0

ρui,t + ρ(uiuj),j + p,i =
(
τij −R∗ij

)
,j

ρCvT ,t + ρCv
(
Tuj

)
,j

= τ ijSij + τ ′ijS ′ij + (qi −Q∗i ),i

(21)

with the Reynolds stress and turbulent heat flux

R∗ij = ρu′iu
′
j (22)

Q∗ = ρCvu′iT ′ (23)

• Level 2: the Reynolds stress equations

R∗ij,t +
(
R∗ijuk

)
,k

= P ∗ij +D∗,1ij +D∗,2ij +D∗,3ij + Φ∗ij − ε∗ij (24)

with the following terms

– production

P ∗ij = −
(
R∗ikuj,k +R∗jkui,k

)
(25)

– turbulent diffusion

D∗,1ij = −
(
ρu′iu

′
ju
′
k

)
,k

(26)

– pressure diffusion

D∗,2ij = −
(
p′
(
u′iδjk + u′jδik

))
,k

(27)

– viscous diffusion

D∗,3ij =
µ

ρ
R∗ij,kk (28)

– pressure strain correlation

Φ∗ij = p′
(
u′i,j + u′j,i

)
= 2p′S ′ij (29)

– dissipation

ε∗ij = 2µ u′i,ku
′
j,k (30)
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• the equations for the turbulent kinetic energy are found by computing the trace of all the

terms in the Reynolds stress equations and are therefore not stored separately.

Note that when in the compressible formulation of Gerolymos and Vallet for incompressible

flows u′′i is replaced by u′i, a different splitting up of the viscous terms into diffusion and dissipa-

tion results, as discussed in the appendix A.4. Hence these terms are not equivalent in the above

compressible and incompressible Reynolds stress equations, but their sum is. The alternative

splitting, i.e. by Gerolymos and Vallet, is sometimes used in the fundamental literature, and

corresponds to the dissipation ε of the turbulent kinetic energy (see Batchelor [2], Tennekes and

Lumley [11] or Pope [9])

ε =
1

2
εii = 2µS ′ijS ′ij

whereas the half of the trace of ε∗ does not.

3.2 Additional quantities of interest

The following fundamental scales are of interest in view of verifying the adequacy of the spatial

and temporal resolution:

• the Taylor microscale (adapted from Batchelor [2], eq. 3.4.8)

ηT =

√
10
µKt
ρ2ε

=

√√√√5
µRii
ρτ ′ijS ′′ij

(31)

• the Kolmogorov length scale, approximated in compressible flow as

ηK =
4

√
ρν3

ε
≈ 4

√
µ3/ρ2

τ ′ijS ′′ij
(32)

• the Kolmogorov time scale;

τK =

√
ν

ε
≈
√

µ

τ ′ijS ′′ij
(33)

Some additional quantities are of interest to verify hypotheses both on a numerical (Morkovin’s

hypothesis) as on an experimental level (e.g. hotwire measurements).

• pressure autocorrelation p′p′

• density autocorrelation ρ′ρ′;

• temperature autocorrelations T ′T ′
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3.3 Mandatory statistical data

As stated in the previous sections, the equations of interest are the averaged Navier-Stokes

equations (level 1) and the Reynolds stress equations (level 2). These are listed in the tables

together with a number of additional quantities of interest. Separate tables are foreseen for the

compressible and the incompressible solvers.

3.3.1 Compressible codes

Table 1 resumes the data that should be accumulated by compressible codes.

Quantity #

Level 1 - averaged Navier-Stokes equations

Averaged density ρ 1

Averaged pressure p 1

Favre averaged velocity ũi 3

Favre averaged temperature T̃ 1

Averaged shear stress τij 6

Averaged heat flux qi 3

Reynolds stress Rij ρu′′i u
′′
j 6

Turbulent heat flux Qi ρh′′u′′i 3

Turbulent shear work u′′i τij 3

Turbulent kinetic energy flux −ρ 1
2
u′′ku

′′
ku
′′
i 3

Cumulative total 30

Level 1 - additional quantities

Averaged velocity ui 3

Averaged temperature T 1

Density autocorrelation ρ′ρ′ 1

Pressure autocorrelation p′p′ 1

Temperature autocorrelation T ′T ′ 1

Taylor microscale ηT

√
5µ
ρ
Rii

τ ′ijS
′′
ij

1

Kolmogorov length scale ηK 4

√
µ3/ρ2

τ ′ijS
′′
ij

1

Kolmogorov time scale τK

√
µ

τ ′ijS
′′
ij

1

Cumulative total 40

Level 2 - Reynolds stress equations

Favre triple velocity correlation ρu′′i u
′′
j u
′′
k 10

Pressure velocity correlation p′u′′i 3

Shear stress-velocity correlation τ ′iju
′′
k 18
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Difference of the Reynolds and Favre averages ui − ũi = u′′i 3

Cumulative total 74

Level 2 - Reynolds stress equations budget terms

Convection Cij (Rij ũk),k 6

Production Pij −(Rikũj,k +Rjkũi,k) 6

Diffusion D1
ij −

(
ρu′′i u

′′
j u
′′
k

)
,k

6

Diffusion D2
ij −

(
p′(u′′i δjk + u′′j δik)

)
,k

6

Diffusion D3
ij

(
u′′i τ
′
jk + u′′j τ

′
ik

)
,k

6

Redistribution/Pressure strain Φij p′(u′′i,j + u′′j,i −
2
3
u′′k,kδij) 6

Pressure dilatation Φ′ij
2
3
p′u′′k,kδij 6

Dissipation εij τ ′iku
′′
j,k + τ ′jku

′′
i,k 6

Density fluctuation effects Kij −u′′i (p,j − τjk,k)− u′′j (p,i − τik,k) 6

Cumulative total 128

Table 1: List of volume statistical quantities for compressible codes. For level 1, this concerns the Reynolds
averaged Navier-Stokes equations (9) following Knight [7] and additional data for verifying resolution or of interest
to experimentalists. In level 2 includes the terms in the compressible Reynolds equation (12) following Gerolymos
and Vallet [3].

3.3.2 Incompressible codes

Table 2 lists the quantities that should be accumulated by incompressible flow codes.

Quantity #

Level 1 - averaged Navier-Stokes equations

Averaged pressure p 1

Averaged velocity ui 3

Averaged temperature T 1

Averaged shear stress τij 6

Averaged heat flux qi 3

Reynolds stress R∗ij ρu′iu
′
j 6

Turbulent heat flux Qi ρe′u′i 3

Cumulative total 23

Level 1 - additional quantities

Pressure autocorrelation p′p′ 1

Temperature autocorrelation T ′T ′ 1

Taylor microscale ηT ≈
√

5µ
ρ

R∗ii
τ ′ijS

′
ij

1

Kolmogorov length scale ηK ≈ 4

√
µ3/ρ2

τ ′ijS
′
ij

1
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Kolmogorov time scale τK ≈
√

µ

τ ′ijS
′
ij

1

Cumulative total 28

Level 2 - Reynolds stress equations budget terms

Convection C∗ij

(
R∗ijuk

)
,k

6

Production P ∗ij −
(
R∗ikuj,k +R∗jkui,k

)
6

Turbulent diffusion D1∗
ij −ρ

(
u′iu
′
ju
′
k

)
,k

6

Turbulent diffusion D2∗
ij −

(
p′
(
u′iδjk + u′jδik

))
,k

6

Molecular diffusion D3∗
ij µ

(
u′iu
′
j

)
,kk

6

Pressure strain Φ∗ij p′
(
u′i,j + u′j,i

)
6

Dissipation ε∗ij 2µu′i,ku
′
j,k 6

Cumulative total 70

Level 2 - Reynolds stress equations - separate terms

Triple velocity correlation ρu′iu
′
ju
′
k 10

Pressure velocity correlation p′u′i 3

Cumulative total 83

Table 2: List of volume statistical quantities for incompressible codes. For level 1, this concerns equation (21)
and additional data for verifying resolution or of interest to experimentalists. In level 2, we included the terms in
the incompressible Reynolds stress equation (24).

3.4 Recommendations

• The accumulated data should be stored at the full resolution and native representation of

the solver, throughout the whole volume;

• However, if the flow has homogeneous directions, an average over these is expected, and

the statistics can then be stored as surface data on one of the periodic planes;

• The computation and checkpointing of the statistical data should follow the approach

described in the appendices B.1 and B.2;

• A distinction is made between the data sets as a function of the type of code (compress-

ible/incompressible) that was used for the computation, not in function of the test case.

4 Required statistical data on solid boundaries

On solid surfaces the statistical data listed in table 3 should be gathered

Quantity #
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pressure average p 1

pressure autocorrelation p′p′ 1

temperature average T 1

temperature autocorrelation T ′T ′ 1

shear stress average τni 3

shear stress autocorrelation τ ′niτ
′
nj 6

heat flux average qn 1

heat flux autocorrelation q′nq
′
n 1

Total 15

Table 3: List of surface statistic data. n indicates the normal direction, whereas i indicates a Cartesian component.

5 Integral time scales

In order to validate the acquisition times for both statistical data as well as the time series in the

boundary layer, it is proposed to compare these times to the integral time scales. This quantity,

in particular for velocity components, is also relevant for turbulence modeling.

For any quantity a, the correlation time or integral time scale is computed from two-point

correlations in time. Considering a statistically steady flow, we define the two-point time corre-

lation in function of the delay τ as

Ca(τ) = lim
T→∞

1

T

∫ T

0
a′(t) a′(t+ τ) dt = lim

T→∞

1

T

∫ T

0
a(t) a(t+ τ) dt− a a (34)

The correlation function C′a is the time correlation non-dimensionalised by the autocorrelation,

i.e. the value for τ = 0:

C ′a(τ) =
Ca(τ)

Ca(0)
(35)

The integral time scale is then defined as:

τa =

∫ ∞
0
C′a(τ)dτ (36)

The integral time scale should be stored for the three components of the velocity separately as

well as for the pressure and density. The computation procedure is discussed in appendix B.3.
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6 Instantaneous data in boundary layers

Within the boundary layer, the time series of the solution, in the native representation of the

solver, should be stored for a representative amount of time; this time can be estimated on the

basis of the volume statistics, in particular with respect to the integral time scale, described in

section 5. There are a number of contradictory requirements

• the temporal resolution should be lower than the integral time scales in order to train or

calibrate unsteady models;

• the period of acquisition should be much larger than the largest integral time scales in

order to allow a good convergence of the statistical data;

• the data should be acquired over a height h that includes the inner part of the boundary

layer. It is proposed to guarantee at least h+ > 100 in the developed regions of the

boundary layer.

In practice these specifications will have to be defined on a case by case basis, in a uniform

manner for all computations. This means that the corresponding values will be based upon

global quantities, such as chord, velocity scale, ... The definition of the acquisition domain

should be specified geometrically identically for all computations, i.e. independent of the results

of the computation itself. This does not preclude the definition on the basis of a preliminary or

reference computation.

Page 14 of 31



ERCOFTAC : List of quantities

Appendices

A Overview of the averaged equations

A.1 Level 1 - Averaged Navier-Stokes equations

The most basic level concerns the ensemble-averaged Navier-Stokes equations and the corre-

sponding flow field. After averaging the Navier-Stokes equations (1), using Favre averages,

these read for compressible flows (see Knight [7]):

ρ,t + (ρũk),k = 0

(ρũi),t + (ρũiũj),j + p,i = (τij −Rij),j

(ρẼ),t + (ρH̃ũj),j = ũi (τij −Rij),j + (qj −Qj),j +

(
u′′i τij −

1

2
ρ
(
u′′ku

′′
k

)
u′′j

)
,j

(37)

complemented by adapted versions of the constitutive equations for the total energy Ẽ and

enthalpy H̃ as functions of the Favre averages of internal energy ẽ, enthalpy h̃ and velocity ũ,

the Reynolds average of pressure p and the turbulent kinetic energy Kt:

p = ρRT̃ ẽ = CvT̃ ρh̃ = ρẽ+ p = ρCpT̃

ρẼ = ρẽ+
1

2
ρũkũk + ρKt ρH̃ = ρh̃+

1

2
ρũkũk + ρKt ρKt =

1

2
ρu′′ku

′′
k =

1

2
ρũ′′ku

′′
k

The turbulent transport terms, including Reynolds stress Rij and turbulent heat flux Qi, are

defined as

Rij = ρu′′i u
′′
j = ρ ũ′′i u

′′
j (38)

Qi = ρu′′i h
′′ = ρ ũ′′i h

′′ (39)

The average of equation (4) then reads

(ρẽ),t + (ρẽũk),k + puk,k + p′u′k,k = τ ijSij + τ ′ijS ′ij + qk,k (40)

A.1.1 Expressions for the molecular transport terms

Due to the unavailability of the Reynolds averages of velocity and temperature, RANS modeling

approaches usually approximate the averaged molecular transport terms using the respective

Favre averages that result from the computation, i.e. :

τij = µ

(
ui,j + uj,i −

2

3
uk,k δij

)
≈ µ

(
ũi,j + ũj,i −

2

3
ũk,k δij

)
(41)

qi = κ T,i ≈ κ ∇T̃,i (42)
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This approximation is inconsistent with a strict averaging of the Navier-Stokes equations; this

approximation may be worth checking for strongly compressible flows.

In order to solve the inconsistency in the preceding formulations, Grigoriev et al.[4] define

additional transport equations for the difference between the Reynolds and Favre average of the

velocity and temperature

ůi = ũi − ui = −u′′i (43)

T̊ = T̃ − T (44)

With the help of ů and T̊ the constitutive equations can be correctly computed:

τij = µ

(
(ũi − ůi),j + (ũj − ůj),i −

2

3
(ũk − ůk),k δij

)
(45)

qi = κ (T̃ − T̊ ),i (46)

Alternatively, ůi can be used to write the averaged Navier-Stokes in terms of ui and R∗ij :

ρ,t + (ρ ui),i = −(ρůi),i

(ρ ui),t + (ρ uiuj),j + p,i =
(
τ ij −R∗ij

)
,j
− (ρ ůi),t + (ρ(̊uiuj + uiůj)),j

(47)

with the incompressible Reynolds stress defined as R∗ij = ρu′iu
′
j .

A.2 Level 2 - Compressible Reynolds stress equations

The second level of volume data concerns the Reynolds stress equations. For compressible flows,

several variants have been proposed in the literature, depending on how pressure and stress

components are decomposed (or not) into mean and fluctuating components.

In the following we will use the short hand notation (mom)i for the instantaneous i-th

component of the momentum equations. The Reynolds stress equations are given by

u′′i (mom)j + u′′j (mom)i = 0

By rearranging we find

u′′i
∂ρuj
∂t

+ u′′j
∂ρui
∂t︸ ︷︷ ︸

Rt

+u′′i (ρujuk),k + u′′j (ρuiuk),k︸ ︷︷ ︸
Rc

= −u′′i p,j + u′′j p,i︸ ︷︷ ︸
Rp

+u′′i τjk,k + u′′j τik,k︸ ︷︷ ︸
Rτ

(48)

The terms Rt and Rc are treated similarly by all authors, whereas the treatment of the terms

Rp and RS differs in how (or even whether) the pressure p and shear stress τ are decomposed in

fluctuating and average parts and then recombined with the higher order correlations stemming

from Rc.
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A.2.1 General formulation

In this section, the common treatment of the terms Rt and Rc is outlined, leading to the

convection term and two contributions to the source terms. In the subsequent sections, different

groupings of the right-hand-side terms are discussed. The final section discusses a common

storage for all of the different formulations.

The contributions corresponding to the time derivatives in (48) can be rearranged as

Rt = u′′i
∂ρuj
∂t

+ u′′j
∂ρui
∂t

= u′′i
∂ρu′′j
∂t

+ u′′j
∂ρu′′i
∂t︸ ︷︷ ︸

Rt1

+u′′i
∂ρũj
∂t

+ u′′i
∂ρũj
∂t︸ ︷︷ ︸

Rt2

Developing the first contribution, we have

Rt1 = 2
∂ρu′′i u

′′
j

∂t
− ρu′′j

∂u′′i
∂t

+ ρu′′i
∂u′′j
∂t

= 2
∂Rij
∂t
− ρ

∂u′′i u
′′
j

∂t

=
∂Rij
∂t

+ u′′i u
′′
j

∂ρ

∂t

The second contribution is then

Rt2 =
���

���
���

�
∂

∂t
ρũju′′i +

∂

∂t
ρũiu′′j − ρũj

∂u′′i
∂t
− ρũi

∂u′′j
∂t

= −���
���

���

ũj
∂ρu′′i
∂t
− ũi

∂ρu′′j
∂t

+ (u′′i ũj + u′′j ũi)
∂ρ

∂t

The correlations resulting from the transport terms Rc can then be rearranged as follows

Rc = u′′i (ρujuk),k + u′′j (ρuiuk),k = u′′i (ρu
′′
juk),k + u′′j (ρu

′′
i uk),k︸ ︷︷ ︸

Rc1

+u′′i (ρũjuk),k + u′′j (ρũiuk),k︸ ︷︷ ︸
Rc2

Developing Rc1 and Rc2 we find

Rc1 = 2u′′i u
′′
j (ρuk),k + ρuk(u

′′
i u
′′
j ),k = u′′i u

′′
j (ρuk),k + (ρu′′i u

′′
juk),k

= u′′i u
′′
j (ρuk),k + (ρu′′i u

′′
j ũk),k + (ρu′′i u

′′
ju
′′
k),k

= (Rij ũk),k + (ρu′′i u
′′
ju
′′
k),k + u′′i u

′′
j (ρuk),k

Rc2 = u′′i ũj(ρuk),k + u′′j ũi(ρuk),k + ρu′′i uk(ũj),k + ρu′′juk(ũi),k

= (u′′i ũj + u′′j ũi)(ρuk),k + ρu′′i u
′′
kũj,k + ρu′′ju

′′
kũi,k +

((((
(((

((((
((

ρu′′i ũk(ũj),k + ρu′′j ũk(ũi),k

= Rikũj,k +Rjkũi,k + (u′′i ũj + u′′j ũi)(ρuk),k
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Collecting the left-hand-side we find the general formulation of the Reynolds stress equations:

Rt +Rc =
∂Rij
∂t

+ (Rij ũk),k + (Rikũj,k +Rjkũi,k) + (ρu′′i u
′′
ju
′′
k),k +

((((
(((

((((
(((

((((
(

(u′′i u
′′
j + u′′i ũj + u′′j ũi)

(
∂ρ

∂t
+ (ρuk),k

)
=
∂Rij
∂t

+ (Rij ũk),k + (Rikũj,k +Rjkũi,k) + (ρu′′i u
′′
ju
′′
k),k

and therefore the Reynolds stress equations are given by

∂Rij
∂t

+ (Rij ũk),k = Rp +Rτ − (Rikũj,k +Rjkũi,k)− (ρu′′i u
′′
ju
′′
k),k (49)

The triple velocity correlation is usually combined with others, but sometimes written explicitly.

It can be found as the combination

ρu′′i u
′′
ju
′′
k = ρuiujuk − ρujukũi − ρukuiũj − ρuiuj ũk + 2ρũiũj ũk

A.2.2 Formulation using instantaneous values of molecular stresses

In his contribution [7] in the AGARD R817 report [8], Knight uses the instantaneous values of

the pressure p and molecular stress τ rather than their fluctuations, so that the Reynolds stress

equation reads:

∂Rij
∂t

+ (Rij ũk),k = Aij +Bij + Cij −Dij (50)

The production term Aij is the third term on the right-hand-side of (49)

Aij = −(Rikũj,k +Rjkũi,k) (51)

To find the other terms, the correlations between the stress divergence terms and the velocity

fluctuations are first converted as follows

Rp = u′′i p,j + u′′j p,i = (pu′′i δjk + pu′′j δik),k − p(u′′i,j + u′′j,i)

Rτ = u′′i τjk,k + u′′j τik,k = (u′′i τjk + u′′j τik),k − τjku′′i,k + τiku
′′
j,k

The first terms of both Rp and Rτ are combined with the last term in (49) to form the diffusion

term

Bij =
{
−ρu′′i u′′ju′′k + u′′j τik + u′′i τjk − pu′′i δjk − pu′′j δik

}
,k

(52)

The remaining terms are then grouped in two stress-velocity gradient correlation terms, respec-

tively the pressure-strain Cij and dissipation Dij

Cij = pu′′i,j + pu′′j,i (53)

Dij = τiku
′′
j,k + τjku

′′
i,k (54)

Notice that this form does not revert directly to the standard incompressible formulation.
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A.2.3 Formulations using Reynolds averaged fluctuations of pressure and viscous

stresses

A second possibility is to split the pressure and stress into their Reynolds averages and corre-

sponding fluctuations

p = p+ p′ τ = τ + τ ′

Since the stress contributions in the Favre-averaged Navier-Stokes equations appear through

Reynolds rather than Favre averages, this choice is logical. Moreover, this choice is consistent

with incompressible formulations, as illustrated in section A.3.

A.2.3.1 Gerolymos and Vallet [3] as well as Sarkar et al.[10] provide similar formula-

tions for the Reynolds stress equations, using this approach, whereas Huang et al. [5] use a

similar decomposition for the turbulent kinetic energy equation. The correlations between the

instantaneous stress divergence and the velocity fluctuations are decomposed as follows:

Rp = u′′i p,j + u′′j p,i + u′′i p
′
,j + u′′j p

′
,i

= (u′′i p,j + u′′j p,i) + (p′u′′i δjk + p′u′′j δik),k − p′(u′′i,j + u′′j,i)

Rτ = u′′i τjk,k + u′′j τik,k + u′′i τ
′
jk,k + u′′j τ

′
ik,k

= (u′′i τjk,k + u′′j τik,k) + (u′′i τ
′
jk + u′′j τ

′
ik),k − τ ′jku′′i,k + τ ′iku

′′
j,k

Notice that the first terms, involving the averaged values of p and τ , disappear for incompressible

flow since u′ = 0. However, Favre fluctuations are used and therefore u′′ 6= 0. This then leads

to the following formulation, following Gerolymos and Vallet [3]1:

∂Rij
∂t

+ (Rij ũk),k = Pij +Dij + Φij − εij +
2

3
p′u′′k,kδij +Kij (55)

The terms in (55) are defined as follows :

• the production term is the same as A in section A.2.2

Pij = −(Rikũj,k +Rjkũi,k) (56)

• the diffusion

Dij = Tijk,k =
(
−ρu′′i u′′ju′′k − p′u′′i δjk + p′u′′j δik + u′′i τ

′
jk + u′′j τ

′
ik

)
,k

(57)

1The notation is not fully consistent with [3] due to the definition Rij = ρu′′i u
′′
j , and the conversion to the

Favre average was not always explicitly used, for instance ρu′′i u
′′
j u
′′
k is retained instead of ρ ˜u′′i u′′j u′′k .
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• correlations between fluctuating pressure and strain are split into the redistribution term

Φij = Πij = p′(u′′i,j + u′′j,i −
2

3
u′′k,kδij) (58)

and the pressure-dilatation term

2

3
p′u′′k,kδij (59)

• the correlations between fluctuating stress and strain then result in the dissipation

εij = τ ′jku
′′
i,k + τ ′iku

′′
j,k (60)

• finally, the remaining terms are grouped in the density fluctuation effects

Kij = −u′′i (p,j − τjk,k)− u′′j (p,i − τik,k) (61)

Note that Gerolymos and Vallet consider Kij to be negligible in their model development. For

verifying the residual of the exact equations, this term should however be included.

A.2.3.2 Grigoriev et al. [4] use the same stress decomposition for the compressible Reynolds

stress equation, but a different organisation of the terms

∂Rij
∂t

+ (Rij ũk),k +
(
ρu′′i u

′′
ju
′′
k

)
,k

=− (Rikũj,k +Rjkũi,k)

− u′′i
(
p′,j − τ ′jk,k

)
− u′′j

(
p′,i − τ ′ik,k

)
+ ůi

(
p,j − τ jk,k

)
+ ůj

(
p,i − τ ik,k

)
(62)

where ůi was defined in equation 44 in section A.1.1.

A.2.4 Formulation using mixed fluctuations of molecular stresses

Finally a hybrid decomposition of the pressure and viscous stresses can be used:

p = p+ p′ τ = τ̃ + τ ′′

This decomposition is only superficially more consistent than that in section A.2.3. The use of

the Favre average of the stress is consistent with its computation from the Favre averages of

velocity in (41), but the stress appearing in the averaged momentum and energy equation is still

Reynolds averaged.
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This decomposition is used by Khlifi and Lili [6]2 as well as Adumitroaie et al. [1]. Following

Khlifi and Lili, the Reynolds stress equation becomes:

∂Rij
∂t

+ (Rij ũk),k = Pij +Dij + φij − εij + Tij (63)

The terms appearing in (63) are

• production

Pij = −(Rikũj,k +Rjkũi,k) (64)

• diffusion

Dij =
(
−ρu′′i u′′ju′′k − p′u′′i δjk + p′u′′j δik + u′′i τ

′′
jk + u′′j τ

′′
ik

)
,k

(65)

• correlations between fluctuating pressure and velocity gradient resulting in the redistribu-

tion term

φij = p′(u′′i,j + u′′j,i) (66)

• the correlations between fluctuating stress and velocity gradient resulting in the dissipation

εij = τ ′′jku
′′
i,k + τ ′′iku

′′
j,k (67)

• finally, the remaining terms are grouped in

Tij = −u′′i p,j − u′′j p,i + u′′i τ̃jk,k + +u′′j τ̃ik,k (68)

A.3 Level 2 - Incompressible Reynolds stress equation

By “incompressible Reynolds stress equations” we mean an equation that describes the evolution

of the Reynolds stress R∗ij = ρu′iu
′
j involving Reynolds fluctuations3.

A.3.1 Formulation when using compressible codes

Next to the compressible Reynolds stress equation (62) mentioned previously, Grigoriev et al. [4]

derived a consistent equation for the incompressible Reynolds stress equation (i.e. involving

Reynolds fluctuations of the velocity) which is also valid in case of compressible flows:

∂R∗ij
∂t

+
(
R∗ijuk

)
,k

+
(
ρu′iu

′
ju
′
k

)
,k

=−
(
R∗ikuj,k +R∗jkui,k

)
−
(
u′i

(
p′,j − τ ′jk,k

)
+ u′j

(
p′,i − τ ′ik,k

))
− ρ (̊uiDtuj + ůjDtui)

(69)

2The paper of Khlifi and Lili [6] has a typo: the divergence in the dissipation term dij was forgotten in (15).
3Note that the density is inside the average.
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with

Dtui =− u′ku′i,k −
(
p,j − τjk,k

ρ

)

A.3.2 Standard incompressible formulation

For incompressible flows, the Reynolds stress equation is usually written as

∂R∗ij
∂t

+
(
R∗ijuk

)
,k

= P ∗ij + Φ∗ij +D∗,1ij +D∗,2ij +D∗,3ij − ε
∗
ij (70)

with

P ∗ij = −
(
R∗ikuj,k +R∗jkui,k

)
Φ∗ij = p′

(
u′i,j + u′j,i

)
εij = 2µ u′i,ku

′
j,k

D∗,1ij = −
(
ρu′iu

′
ju
′
k

)
,k

D∗,2ij = −
(
p′
(
u′iδjk + u′jδik

))
,k

D∗,3ij = µ
(
u′iu
′
j

)
,kk

= νR∗ij,kk

For flows with compressibility effects, equation (70) is equivalent to (69), when the following

correction terms are added

−ρ (̊uiDtuj + ůjDtui) +
µ

3
u′iu
′
k,kj + u′ju

′
k,ki (71)

A.4 Level 2 - Check of the equivalence of the incompressible and the com-

pressible form of the Reynolds stress equations following Gerolymos and

Vallet

We will check the equivalence of the compressible form of Gerolymos and Vallet and the standard

incompressible Reynolds stress equations. The Reynolds stress equation following Gerolymos et

al. reads

Rij,t + (Rij ũk),k = Pij +Dij + Φij + Φ′ij − εij +Kij

with the viscous diffusion and dissipation terms

D3
ij =

(
u′′i τ

′
jk + u′′j τ

′
ik

)
,k

εij = τ ′jku
′′
i,k + τ ′iku

′′
j,k

and the incompressible form

R∗ij,t +
(
R∗ijuk

)
,k

= P ∗ij +D∗,1ij +D∗,2ij +D∗,3ij + Φ∗ij − ε∗ij

with the viscous diffusion and dissipation terms

D∗,3ij = νR∗ij,kk ε∗ij = 2µ u′i,ku
′
j,k
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We will now check the equivalence for the case where the flow is incompressible, i.e.

u′′i = u′i u′i,i = 0 τ ′ij = µ
(
u′i,j + u′j,i

)
In these conditions, the dissipation following Gerolymos and Vallet can be developed as

εij =
(
u′iτ
′
jk + u′jτ

′
ik

)
,k

= µ
((
u′j,k + u′k,j

)
u′i,k +

(
u′i,k + u′k,i

)
u′j,k

)
= 2µu′i,ku

′
j,k + µu′k,ju

′
i,k + u′k,iu

′
j,k

= ε∗ij + µu′k,ju
′
i,k + u′k,iu

′
j,k

(72)

The incompressible viscous diffusion term can be developed as

D∗,3ij = νR∗ij,kk = µ
(
u′iu
′
j

)
,kk

= µ u′i,kku
′
j + 2u′i,ku

′
j,k + u′iu

′
j,kk (73)

while from the compressible equations the viscous diffusion is

D3
ij =

(
u′iτ
′
jk + u′jτ

′
ik

)
,k

= µu′i

(
u′j,k + u′k,j

)
+ u′j

(
u′i,k + u′k,i

)
,k

= µu′i,kku
′
j + 2u′i,ku

′
j,k + u′iu

′
j,kk + µu′i,ku

′
k,j + u′k,iu

′
j,k +((((

(((
((

µu′iu
′
k,jk + u′ju

′
k,ik

= D∗,3ij + µu′i,ku
′
k,j + u′k,iu

′
j,k

(74)

The compressible form of the dissipation terms is the closest to a componentwise decomposition

of the dissipation of the mechanical/kinetic energy ε = 2τijSij while the reorganisation of the

incompressible form seems targeted to obtain a straightforward diffusion of the Reynolds stress

itself (see Batchelor [2], Tennekes and Lumley [11] or Pope [9]). We see therefore that even when

u′′i = u′i, the incompressible and compressible versions of neither the viscous diffusion nor the

dissipation are fully equivalent but their sum is. This means one has to take care when using

these terms for model development.
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B Guidelines for the acquisition of statistics

B.1 One-point correlations

B.1.1 Simple averages

We start with the accumulation of direct averages, for instance of the density velocity correlation.

Obviously, the most straightforward approximation of the average after n time steps is

ρui ≈ ρuin =
1

n

n∑
t=1

ρtuti (75)

with ρl, ulj the instantaneous values at time t. This average is computed through the recurrence

ρui
n =

(n− 1)ρuj
n−1 + ρnunj
n

(76)

The approximation to the Favre average of the velocity is simply found as

ũi ≈ ũni =
ρui

n

ρn
(77)

B.1.2 Correlations between fluctuations

Some care has to be taken when considering fluctuations, since they are supposed to be computed

with respect to a converged average. This means that correlations between fluctuations can not

be accumulated in the same way as a direct average. Take for instance the Reynolds stress. The

latter is computed as

Rij = ρu′′i u
′′
j = ρ(ui − ũi)(uj − ũj) ≈ Rnij =

1

n

n∑
t=1

ρt(uti − ũi)(utj − ũj) (78)

Note that ũi is supposed to be the exact Favre average of the velocity. This seems to imply we

need to converge the Favre average first before starting the accumulation of the Reynolds stress.

This is undesirable since it has profound implications both on the quality and computational

cost of the accumulation procedure:

• the samples used for the average are not used for the accumulation of the Reynolds stress,

thus reducing the statistical convergence of the latter;

• conversely, none of the samples used for the Reynolds stress are used for the averages;

• the approximation of the Reynolds stress depends on the quality of the average which is

no longer improved.
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Fortunately, this prior convergence is not necessary and both averages ρ and ũi as well as the

Reynolds stress Rij can (and should) be accumulated at the same time. At each time step, the

accumulated correlations should be computed using the latest average available for each sample

in the series, leading to

Rij ≈ Rnij = ρu′′i u
′′
j

n
=

1

n

n∑
t=1

ρt(uti − ũni )(utj − ũnj ) (79)

Notice the difference in superscript indices for the instantaneous and averaged quantities. The

most straightforward way, which also is the least sensitive to round-off error, is to accumulate

simple ”baseline” correlations between the velocities and density

ρuiuj ≈ ρuiujn =
1

n

n∑
t=1

ρtutiu
t
j (80)

and only compute the Reynolds stress when needed (e.g. for exporting to disk), as a post-

processing step:

Rnij = ρuiuj
n − ρnũni ũnj (81)

Other correlations can be constructed in a similar way. For instance, the approximation of the

triple velocity correlation then reads

ρu′′i u
′′
ju
′′
k = ρuiujuk − ρuiuj ũk − ρujukũi − ρukuiũj + 2ρũiũj ũk

≈ ρuiujukn − ρuiujn ũnk − ρujukn ũni − ρukuin ũnj + 2ρnũni ũ
n
j ũ

n
k

(82)

Accumulating the final correlations directly would not only increase the “on-board” storage,

but render the accumulation much more complicated and even require the storage of additional

auxiliary quantities.

B.1.3 Partitioning of the averaging window

It is difficult to verify during the run when exactly the stationary regime is obtained. Therefore,

it is recommended to keep regular checkpoints such that the actual averaging window can still

be corrected. We propose that a checkpoint at time tn contains the averages and baseline

correlations over the full history from the start of the statistics acquisition - supposedly at t0 -

up to tn.

Say we find that the regime is finally achieved at tm, then we can compose the approximation

of the average of a or baseline correlation a b as

am:n =
1

n−m
(n an −m am) (83)

ab
m:n

=
1

n−m

(
n ab

n −m ab
m
)

(84)
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where an denotes the average up to tn and an:m indicates the average between tn and tm.

During the computation, the code then merely has to read the checkpoint at tm and then

perform this recombination of the baseline correlations, before computing and exporting the

actual correlations. Note that storing the final correlations in the checkpoint would render this

operation much more complex.

Alternatively the checkpoint could store the average tn over the window between the current

and the previous checkpoint, however this would require storing (and reading) all checkpoints

over a given interval to compute the average over this interval.

B.1.4 Recommendations

• for the reasons outlined in sections B.1.1, B.1.2 and B.1.3, only direct averages and baseline

correlations should be stored in the checkpoint, whereas the actual correlations between

fluctuations will be computed via post-processing. Lists of averages and baseline correla-

tions needed for reconstructing the data sets are provided in appendix B.2;

• in principle statistics can be accumulated only if the flow has reached statistic stationarity.

Since the latter is hard to prove / estimate, one should partition the averaging time in

several windows. This then allows to correct the average a posteriori. Using checkpoint

data with direct averages up to the current time step, one then decides a posteriori which

intervals to keep in the average following the approach discussed in B.1.3;

• if the flow possesses homogeneous directions, the averaging procedure can include a spatial

average over these directions; the result may then be stored on the associated periodic

plane. This however does not imply any simplification (i.e. reduction of indices) of the

resulting correlations.

B.2 Minimum required volumetric data in checkpoints

B.2.1 Compressible codes

Table 4 lists a minimal set of averages that allow to reconstruct all of the quantities of interest

in table 1 using the accumulation approach (81). This is the minimal set of data which should

be accumulated during the computation and therefore stored in the checkpoint/restart files.

Quantity #

Level 1 - averaged Navier-Stokes equations

Averaged density ρ 1

Averaged pressure p 1

Density - velocity correlation ρui 3
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Density - temperature correlation ρT 1

Averaged shear stress τij 6

Averaged heat flux qi 3

Density weighted velocity autocorrelation ρuiuj 6

Density weighted temperature - velocity correlation ρTui 3

Velocity - shear stress correlation uiτjk 18

Density - velocity triple correlation ρuiujuk 10

Cumulative total 52

Level 1 - additional quantities

Averaged velocity ui 3

Averaged temperature T 1

Velocity autocorrelation uiuj 6

Temperature - velocity correlation Tui 3

Density autocorrelation ρρ 1

Pressure autocorrelation pp 1

Temperature autocorrelation TT 1

Cumulative total 68

Level 2 - Reynolds stress equations

Pressure - velocity correlation pui 3

Pressure - strain rate correlation p(ui,j + uj,i) 6

Shear stress - velocity gradient correlation τikuj,k + τjkui,k 6

Velocity gradient autocorrelation ui,kuj,k 6

Averaged specific stress resultant (p,i − τjk,k)/ρ 3

Velocity - velocity divergence gradient correlation uiuk,kj + ujuk,ki 6

Cumulative total 98

Table 4: List of baseline quantities, required to reconstruct the quantities of interest of table 1. These terms are
also sufficient to reconstruct all terms in table 6.

B.2.2 Incompressible codes

Table 5 lists a minimal set of averages that allow to reconstruct all of the quantities of interest

in table 2 using the accumulation approach (81). This is the minimal set of data which should

be accumulated during the computation and therefore present in a checkpoint/restart file.

Quantity #

Level 1 - averaged Navier-Stokes equations

Averaged pressure p 1

Averaged velocity ui 3
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Averaged temperature T 1

Velocity autocorrelation uiuj 6

Temperature - velocity correlation Tui 3

Pressure - velocity correlation pui 3

Cumulative total 17

Level 1 - additional quantities

Pressure autocorrelation pp 1

Temperature autocorrelation TT 1

Cumulative total 19

Level 2 - Reynolds stress equations

Triple velocity correlation uiujuk 10

Velocity - velocity gradient correlation ukui,k 3

Velocity gradient autocorrelation ui,kuj,k 6

Pressure - strain rate correlation p(ui,j + uj,i) 6

Shear stress - velocity correlation τijuk 18

Cumulative total 62

Table 5: List of baseline quantities, required to reconstruct the quantities of interest in table 2.

B.3 Integral time scales

B.3.1 Procedure

In practice, the time correlation Ca(τ) can only be known at discrete values of τ , with a resolution

corresponding to a multiple of the computation time step N∆t. Since we need to store previous

snapshots, this integral can therefore only be accumulated at time steps tn = nN∆t , n =

1 . . .∞, for discrete values of the time separation τk = kN∆t , k = 0 . . .K. The accumulation

procedure therefore should construct the time correlation between the full values

C̃na (τk)=̂

(
(n− 1)

(
Cn−1
a (kN∆t) + an−1an−1

)
+ a((n− k)N∆t) a(nN∆t)

)
n

(85)

Only at the time of the export, these values are post-processed, e.g. using the trapezoid rule

τna =̂
N∆t

Cna (0)− anan

((
K−1∑
k=0

Cna (τk) + Cna (τk+1)

2

)
−K anan

)
(86)

B.3.2 Recommendations

• During the computation and in the checkpoints, the code should store the time correlations

between the full values, not between the fluctuations for the same reasons mentioned
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for the one-point correlations: i.e. simplifying accumulation and restart and enable the

recombination of several acquisition windows.

• The computation and storage cost depends on the number of values K for which the

correlation is computed. This depends in turn on the resolution in time N∆t, as well as

well as the maximum value of τ . The truncation of the series should satisfy the following

criteria

– the resolution N∆t should be at least 20 times smaller than τa;

– the maximum time length should be larger than τa;

– the statistics should also be partitioned.

This means that at any time during the acquisition of statistics, the computation should

keep track of 20 solution snapshots. The actual value of N∆t unfortunately has to be

assessed during the computation, and its ideal value may vary over the domain.

C Optional data sets for compressible flow solvers

Table 6 provides an optional list of data for compressible flow solvers, which allow to obtain the

compressible Reynolds stress equations proposed by Knight (50), Khlifi et al. (63) and Grigoriev

et al. (62), as well as the incompressible Reynolds stress equation proposed by Grigoriev et

al. (69). Note that similar correlations appear as in table 1 with different combinations of

instantaneous values as well as Reynolds and Favre fluctuations; some of these are effectively

the same as in the terms used in the Gerolymos formulation and therefore not repeated here.

Quantity #

Level 2 - Reynolds stress equations

Pressure - velocity correlation pu′′i 3

Pressure - strain rate correlation p(u′′i,j + u′′j,i) 6

Velocity - pressure gradient correlation u′ip
′
,j + p′,iu

′
j 6

Shear stress - velocity gradient correlation τiku
′′
j,k + τjku

′′
i,k 6

Shear stress - velocity gradient correlation τ ′′iku
′′
j,k + τ ′′jku

′′
i,k 6

Velocity - shear stress divergence correlation u′iτ
′
jk,k + u′jτ

′
ik,k 6

Cumulative total 33

Level 2 - incompressible Reynolds stress equations

Triple velocity correlation ρu′iu
′
ju
′
k 10

Velocity - velocity gradient correlation u′iu
′
j,i 3

Specific stress resultant (p,i − τik,k)/ρ 3

Velocity - velocity divergence gradient u′iu
′
k,kj + u′ju

′
k,ki 6
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Level 2 - Incompressible Reynolds stress equations budget terms

Convection C∗ij

(
R∗ijuk

)
,k

6

Production P ∗ij −
(
R∗ikuj,k +R∗jkui,k

)
6

Turbulent diffusion D1∗
ij −

(
ρu′iu

′
ju
′
k

)
,k

6

Turbulent diffusion D2∗
ij −

(
p′
(
u′iδjk + u′jδik

))
,k

6

Molecular diffusion D3∗
ij µ

(
u′iu
′
j

)
,kk

6

Pressure strain Φ∗ij p′
(
u′i,j + u′j,i

)
6

Dissipation ε∗ij 2µu′i,ku
′
j,k 6

Correction term −ρ (ůiDtuj + ůjDtui) + µ
3
u′iu
′
k,kj + u′ju

′
k,ki 6

Cumulative total 103

Table 6: List of additional volume statistical quantities, including the missing terms† of the compressible formu-
lations of equations (50), (63) and (62); and those∗ in equation (70).

With

Dtui =− u′ku′i,k −
(
p,j − τjk,k

ρ

)
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